CYCLOMETALLATED COMPOUNDS

III *. CYCLOPALLADATION OF PHENYL PYRAZOLES. CRYSTAL STRUCTURE OF ACETYLACETONATO[2-(3-METHYL-5-PHENYLPYRAZOL-1-YL)PHENYL- $C^{\mathbf{1}}, N^{\mathbf{2}^{\prime}}$]PALLADIUM(II)

GRAHAM B. CAYGILL and PETER J. STEEL*

Chemistry Department, University of Canterbury, Christchurch (New Zealand)
(Received December 11th, 1986)

Summary

Six pyrazoles have been cyclopalladated by reaction with either lithium tetrachloropalladate or palladium acetate and the dimeric products converted to monomeric acetylacetonate complexes. The crystal structure of acetylacetonato[2-(3-methyl-5-phenylpyrazol-1-yl)phenyl- $C^{1}, N^{2^{\prime}}$ lpalladium(II) has been determined. Crystals are monoclinic: a 15.035(3), b 8.541(1), $c 16.340(4) \AA, \beta 117.10(1)^{\circ}, P 2_{1} / c, Z=4$; the structure was refined to $R=0.030$.

Introduction

The preparations [1] and applications in organic synthesis [2] of cyclopalladated compounds incorporating an internal nitrogen donor have been the subject of extensive research in recent years. In the preceeding paper [3] we reported unambiguous assignments of proton and carbon-13 NMR spectra of a number of cyclopalladated complexes. As part of that work we required the preparation of a number of cyclopalladated phenyl heterocycles as their acetylacetonate complexes. In the present work we describe the cyclopalladation of several N-phenyl pyrazoles and their conversion to the acetylacetonate complexes. An X-ray crystal structure of the complex from 1,5-diphenyl-3-methylpyrazole is also reported.

Results and discussion

The cyclopalladated chloro-bridged dimers b were prepared (Scheme 1) from the ligands a either directly, by reaction with lithium tetrachloropalladate, or by

[^0]

SCHEME 1
reaction with palladium acetate to give the acetate-bridged dimer c followed by anion exchange to the chloride. Thus 1-phenylpyrazole (1a), 3,5-dimethyl-1-phenylpyrazole (2a), 1,5-diphenyl-3-methylpyrazole (3a) and 2-phenylindazole (5a) were each converted directly to the chloro-bridged dimers $\mathbf{1 b}, \mathbf{2 b}, \mathbf{3 b}$ and $\mathbf{5 b}$ respectively. The reaction of 1a has been previously reported [4-6]. Reaction of $1,3,5$-triphenylpyrazole (4a) under the same conditions gave a mixture of the cyclopalladated chloro dimer $\mathbf{4 b}$ and the non-cyclopalladated trans-dichloro-bis-pyrazole palladium complex 4d. In the case of 1-benzylpyrazole (6a) no cyclopalladation was observed and the sole product of the reaction was the complex $\mathbf{6 d}$. This is consistent with the known [7-9] greater difficulty in effecting cyclometallation reactions that result in the formation of a six-membered ring compared to those that produce a five-membered metallocycle. The occurrence of cyclopalladation was readily monitored by infrared spectroscopy; in particular cyclopalladation results in the conversion of the out-of-plane $\mathbf{C}-\mathrm{H}$ deformation pattern for a monosubstituted benzene to that of an ortho-disubstituted benzene ring.

The cyclopalladated chloro-bridged dimers $\mathbf{4 b}$ and $\mathbf{6 b}$ were prepared by the alternative procedure of reaction with the more reactive palladium acetate and subsequent acetate-chloride exchange. Each of the chloride dimers was then converted to the corresponding acetoacetonate monomer 1e-6e by ligand exchange.

Fig. 1. Perspective view and atom labelling of 3 e.

Full assignments of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the acetoacetonate complexes 1e-6e are described in the accompanying paper [3]. A notable feature of the NMR spectra of the complexes $3 \mathbf{e}$ and 4 e is the existence of large upfield shifts of protons in the cyclopalladated phenyl ring. Such shifts are not observed in other cyclopalladated phenyl rings [3]. Thus in order to probe the origin of these effects and to confirm the structure of the complex a single-crystal X-ray structure determination of 3 e was carried out.

Figure 1 shows a perspective view of the structure of $\mathbf{3 e}$ and includes the atom labelling. Tables 1 and 2 list bond lengths and angles respectively with standard deviations in parentheses. The structure is thus confirmed as acetylacetonato [2-(3-methyl-5-phenylpyrazol-1-yl)phenyl- $C^{1}, N^{2^{\prime}}$]palladium(II). The coordination about the palladium atom is square planar, the maximum deviation from the meanplane described by the palladium and its four coordinated atoms being 0.043 $\AA(C(12))$. Although most crystal structures of cyclopalladated complexes [10-17] have shown close to square planar coordination geometry, a recent example [18] described significant tetrahedral distortion about the palladium atom. The $O, O^{\prime}-$ bonded [19] acetylacetonate ligand is planar (maximum deviation from the meanplane: $0.044 \AA$) with its meanplane slightly tilted (3.2°) with respect to the (previous) coordination meanplane. The bonding geometry of the acetylacetonate ligand is similar to that of other $\mathrm{Pd}(\mathrm{acac})$ complexes [20-24]. The different trans influences of carbon and nitrogen are reflected in the unequal $\mathrm{Pd}-\mathrm{O}(2)$ and $\mathrm{Pd}-\mathrm{O}(4)$ bond lengths as has been observed in related structures [12-17,23,24].

The metallated phenyl ring and the pyrazole ring are both planar (maximum deviations: 0.020 and $0.005 \AA$, respectively) but are not mutually coplanar (angle between meanplanes: 7.8°). The relatively short $\mathrm{Pd}-\mathrm{C}(12)$ bond length suggests the

TABLE 1
BOND LENGTHS (Å) FOR 3 e

Pd-N(2)	$2.020(3)$	$\mathrm{Pd}-\mathrm{C}(12)$	$1.962(4)$
$\mathrm{Pd}-\mathrm{O}(2)$	$2.083(3)$	$\mathrm{Pd}-\mathrm{O}(4)$	$2.010(2)$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.377(4)$	$\mathrm{N}(1)-\mathrm{C}(5)$	$1.347(4)$
$\mathrm{N}(1)-\mathrm{C}(11)$	$1.431(4)$	$\mathrm{N}(2)-\mathrm{C}(3)$	$1.332(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.396(6)$	$\mathrm{C}(3)-\mathrm{C}(31)$	$1.486(6)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.373(5)$	$\mathrm{C}(5)-\mathrm{C}(51)$	$1.484(5)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.405(5)$	$\mathrm{C}(11)-\mathrm{C}(16)$	$1.385(5)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.384(4)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.380(5)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.389(5)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.389(4)$
$\mathrm{C}(51)-\mathrm{C}(52)$	$1.377(4)$	$\mathrm{C}(51)-\mathrm{C}(56)$	$1.384(4)$
$\mathrm{C}(52)-\mathrm{C}(53)$	$1.388(6)$	$\mathrm{C}(53)-\mathrm{C}(54)$	$1.363(5)$
$\mathrm{C}(54)-\mathrm{C}(55)$	$1.387(5)$	$\mathrm{C}(55)-\mathrm{C}(56)$	$1.381(6)$
$\mathrm{C}(71)-\mathrm{C}(72)$	$1.490(6)$	$\mathrm{C}(72)-\mathrm{C}(73)$	$1.403(4)$
$\mathrm{C}(72)-\mathrm{O}(2)$	$1.271(5)$	$\mathrm{C}(73)-\mathrm{C}(74)$	$1.379(5)$
$\mathrm{C}(74)-\mathrm{C}(75)$	$1.511(5)$	$\mathrm{C}(74)-\mathrm{O}(4)$	$1.279(5)$

existence of multiple bonding due to metal-to-ligand back bonding [14,15], a conclusion which is supported by the NMR data [3]. The geometry of the pyrazole ring is normal [25].

The phenyl ring at $\mathrm{C}(5)$ is planar (maximum deviation: $0.008 \AA$ and inclined to the pyrazole and palladated phenyl rings at angles of 80.4 and 77.8°, respectively. The unusual ${ }^{1} H$ NMR chemical shifts observed for this compound are thus

TABLE 2
BOND ANGLES $\left({ }^{\circ}\right)$ FOR 3e

$\mathrm{N}(2)-\mathrm{Pd}-\mathrm{C}(12)$	$80.7(1)$	$\mathrm{N}(2)-\mathrm{Pd}-\mathrm{O}(2)$	$97.1(1)$
$\mathrm{C}(12)-\mathrm{Pd}-\mathrm{O}(2)$	$176.9(1)$	$\mathrm{N}(2)-\mathrm{Pd}-\mathrm{O}(4)$	$171.2(1)$
$\mathrm{C}(12)-\mathrm{Pd}-\mathrm{O}(4)$	$90.8(1)$	$\mathrm{O}(2)-\mathrm{Pd}-\mathrm{O}(4)$	$91.5(1)$
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(5)$	$110.4(3)$	$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(11)$	$114.9(3)$
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(11)$	$134.7(3)$	$\mathrm{Pd}-\mathrm{N}(2)-\mathrm{N}(1)$	$114.4(2)$
$\mathrm{Pd}-\mathrm{N}(2)-\mathrm{C}(3)$	$138.7(3)$	$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$106.5(3)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$109.4(3)$	$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(31)$	$122.9(4)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(31)$	$127.7(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$106.9(3)$
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$106.9(3)$	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(51)$	$124.5(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(51)$	$128.7(3)$	$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$113.8(3)$
$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(16)$	$123.6(3)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	$122.5(3)$
$\mathrm{Pd}-\mathrm{C}(12)-\mathrm{C}(11)$	$115.9(2)$	$\mathrm{Pd}-\mathrm{C}(12)-\mathrm{C}(13)$	$126.8(3)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$117.2(3)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$121.4(3)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$120.2(3)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$120.3(3)$
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	$118.3(3)$	$\mathrm{C}(5)-\mathrm{C}(51)-\mathrm{C}(52)$	$119.5(3)$
$\mathrm{C}(5)-\mathrm{C}(51)-\mathrm{C}(56)$	$121.4(3)$	$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(56)$	$119.0(4)$
$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)$	$120.5(3)$	$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)$	$120.3(3)$
$\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(55)$	$119.8(4)$	$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(56)$	$120.0(3)$
$\mathrm{C}(51)-\mathrm{C}(56)-\mathrm{C}(55)$	$120.4(3)$	$\mathrm{C}(71)-\mathrm{C}(72)-\mathrm{C}(73)$	$119.5(4)$
$\mathrm{C}(71)-\mathrm{C}(72)-\mathrm{O}(2)$	$115.5(3)$	$\mathrm{C}(73)-\mathrm{C}(72)-\mathrm{O}(2)$	$125.0(3)$
$\mathrm{C}(72)-\mathrm{C}(73)-\mathrm{C}(74)$	$127.4(4)$	$\mathrm{C}(73)-\mathrm{C}(74)-\mathrm{C}(75)$	$119.1(4)$
$\mathrm{C}(73)-\mathrm{C}(74)-\mathrm{O}(4)$	$127.3(3)$	$\mathrm{C}(75)-\mathrm{C}(74)-\mathrm{O}(4)$	$113.6(3)$
$\mathrm{Pd}-\mathrm{O}(2)-\mathrm{C}(72)$	$124.3(2)$	$\mathrm{Pd}-\mathrm{O}(4)-\mathrm{C}(74)$	$124.3(2)$

explained by the fact that this phenyl ring is approximately orthogonal to the conformationally fixed cyclometallated ring. Thus the unusually high-field position of $\mathrm{H}(16)$ is due to its lying in the shielding region above the $\mathrm{C}(5)$ phenyl ring. Furthermore a comparison of the NMR spectra of 4 e with those of 3 e clearly shows that it is the N-phenyl ring of 4 a that has undergone palladation rather than the $\mathrm{C}(3)$-phenyl ring, which is also suitably disposed for cyclopalladation.

Experimental

Infrared spectra were recorded with a Shimadzu IR27G spectrophotomer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Varian XL300 spectrometer for CDCl_{3} solutions with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. NMR assignments were made as described in ref. 3 . The ligands were prepared according to the literature procedures: 1a, 2a [26], 3a, 4a [27], 5a [28], and 6a [29].

Preparation of chloro-bridged dimers

A. From lithium tetrachloropalladate

A solution of one equivalent of palladium chloride and three equivalents of lithium chloride in methanol was refluxed for 2 h and then filtered. The filtrate was then added to a methanol solution containing one equivalent of the ligand. After 24 h stirring, the precipitate was filtered off and washed with methanol. Yield: typically 80%.

Di- μ-chloro-bis[2-(pyrazol-1-yl)phenyl-C ${ }^{1}, N^{2^{\prime}}$ Jdipalladium(II) (1b). Reaction of 1-phenylpyrazole 1 a as above gave $\mathbf{1 b}$, as previously reported [4-6].

Di- μ-chloro-bis[2-(3,5-dimethylpyrazol-1-yi)phenyi- $\mathrm{C}^{1}, N^{2^{\prime}}$ Jdipailadium(II) (2b). Reaction of 3,5-dimethyl-1-phenylpyrazole (2a) as above gave 2b. m.p. $>250^{\circ} \mathrm{C}$. $\boldsymbol{\nu}(\mathrm{KBr}) 745 \mathrm{~cm}^{-1}\left(1,2-\mathrm{C}_{6} \mathrm{H}_{4}\right)$. Found: C, 46.0; H, 4.0; N, 9.7. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{Pd}_{2}$ calc: C, 46.7; H, 3.9; N, 9.9\%.

Di- μ-chloro-bis[2-(3-methyl-5-phenylpyrazol-1-yl)phenyl-C ${ }^{1}, N^{2^{\prime}}$]dipalladium(II) (3b). Reaction of 1,5-diphenyl-3-methylpyrazole (3a) as above gave 3b. m.p. $311-313^{\circ} \mathrm{C}(\mathrm{dec}) . \nu(\mathrm{KBr}) 765$ and $695\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 750 \mathrm{~cm}^{-1}\left(1,2-\mathrm{C}_{6} \mathrm{H}_{4}\right)$. Found: C , 51.3; H, 3.5; N, 7.5 calc.: C, 51.2; H, 3.5; N, 7.5\%.

Di- μ-chloro-bis[2-(indazol-2-yl)phenyl-C ${ }^{l}, N^{1^{\prime}}$ Jdipalladium(II) (5b). Reaction of 2-phenylindazole (5a) as above gave 5 b. m.p. $>300^{\circ} \mathrm{C} . \boldsymbol{\nu}(\mathrm{KBr}) 750 \mathrm{~cm}^{-1}\left(1,2-\mathrm{C}_{6} \mathrm{H}_{4}\right)$. Found: C, 47.0; H, 2.7; N, 8.4. $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{Pd}_{2}$ calc: $\mathrm{C}, 46.6 ; \mathrm{H}, 2.7 ; \mathrm{N}, 8.4 \%$.

Reaction of 1,3,5-triphenylpyrazole (4a) as above gave a mixture of 4b and 4d. Reaction of 1-benzylpyrazole (6a) as above gave only the non-cyclopalladated complex trans-dichlorobis[1-benzylpyrazole]palladium(II) (6d). m.p. $196^{\circ} \mathrm{C} . \boldsymbol{\nu}(\mathrm{KBr})$ 770 and $705 \mathrm{~cm}^{-1}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$. Found: C, $48.7 ; \mathrm{H}, 4.0 ; \mathrm{N}, 11.4 . \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{Pd}$ calc: C, 48.7; H, 4.1; N, 11.4\%.

B. From palladium acetate

A solution of equimolar quantities of palladium(II) acetate and the ligand in glacial acetic acid was heated on a steam bath for ca. 4 h . After removal of the acetic acid under vacuum the residue was suspended in acetone and an aqueous solution containing three equivalents of lithium chloride was added. After 24 h stirring the product was isolated by filtration and washed with acetone.

Di- μ-chloro-bis[2-(3,5-diphenylpyrazol-1-yl)phenyl- $C^{1}, N^{2^{\prime}}$]dipalladium(II) (4b). Reaction of $1,3,5$-triphenylpyrazole (4a) as seen above gave 4b. m.p. $280-283^{\circ} \mathrm{C}$ (dec). $\nu(\mathrm{KBr}) 765$ and $695\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 750 \mathrm{~cm}^{-1}\left(1,2-\mathrm{C}_{6} \mathrm{H}_{4}\right)$. Found: C, 58.4; H, 3.5; N, 6.3. $\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{Pd}_{2}$ calc: C, 57.7; H, 3.5; N, 6.4\%.

Di- μ-chloro-bis[2-(pyrazol-1-ylmethyl)phenyl-C $\left.{ }^{l}, N^{2^{\prime}}\right]$ dipalladium(II) (6b). Reaction of 1-benzylpyrazole (6a) as above gave 6b. m.p. $253-255^{\circ} \mathrm{C}$ (dec). $\boldsymbol{\nu}(\mathrm{KBr}) 755$ $\mathrm{cm}^{-1}\left(1,2-\mathrm{C}_{6} \mathrm{H}_{4}\right)$. Found: C, $40.0 ; \mathrm{H}, 3.0 ; \mathrm{N}, 9.3 . \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{Pd}_{2}$ calc: $\mathrm{C}, 40.2 ; \mathrm{H}$, 3.0; N, 9.4\%.

Preparation of acetylacetonate complexes
The chloro-bridged dimer was added to a methanol solution containing sodium methoxide and excess acetylacetone and the resulting mixture stirred for 24 h . The precipitated product was filtered and recrystallised from dichloromethane/petroleum ether. Yield: typically 85%.

Acetylacetonato[2-(pyrazol-1-yl)phenyl- $\mathrm{C}^{1}, N^{2^{\prime}}$]palladium(II) (1e). m.p. $235^{\circ} \mathrm{C}$ (dec); lit. [5] m.p. 231° C. ${ }^{1} \mathrm{H}$ NMR $\delta 2.05$ and 2.10 , s, acac- CH_{3}; 5.41, s, acac-CH; 6.45 , dd, ${ }^{3} J_{4^{\prime}, 3^{\prime}} 2.7,{ }^{3} J_{4^{\prime}, 5^{\prime}} 2.2 \mathrm{~Hz}, \mathrm{H}\left(4^{\prime}\right) ; 7.06,7.07$ and $7.12, \mathrm{~m}, \mathrm{H}(3), \mathrm{H}(4)$ and $\mathrm{H}(5)$; $7.55, \mathrm{~m}, \mathrm{H}(6) ; 7.78, \mathrm{dd},{ }^{3} J_{3^{\prime}, 4^{\prime}} 2.2,{ }^{4} J_{3^{\prime}, 5^{\prime}} 0.8 \mathrm{~Hz}, \mathrm{H}\left(3^{\prime}\right) ; 7.90$, $\mathrm{dd},{ }^{3} J_{5^{\prime}, 4^{\prime}} 2.7,{ }^{4} J_{5^{\prime}, 3^{\prime}} 0.8$ $\mathrm{Hz}, \mathrm{H}\left(5^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR $\delta 27.5$ and 27.8, acac- $\mathrm{CH}_{3} ; 100.5$, acac- $\mathrm{CH} ; 106.5 \mathrm{C}\left(4^{\prime}\right)$; 110.5, C(3); 124.8, C(5'); 124.9 C(4); 125.1, C(5); 132.0, C(6); 138.7, C(3'); 135.1 and 143.4, C(1) and C(2); 186.4 and 188.3, acac-CO.

Acetylacetonato[2-(3,5-dimethylpyrazol-1-yl)phenyl- $C^{1}, N^{2^{\prime}}$]palladium(II) (2e). m.p. $157-158^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\delta 2.00$ and 2.09 , s, acac- $\mathrm{CH}_{3} ; 2.54, \mathrm{~s}, \mathrm{C}\left(3^{\prime}\right)-\mathrm{CH}_{3} ; 2.63$, s, $\mathrm{C}\left(5^{\prime}\right)-\mathrm{CH}_{3} ; 5.39$, s, acac-CH; $5.92, \mathrm{~s}, \mathrm{H}\left(4^{\prime}\right) ; 7.01$, ddd, ${ }^{3} J_{5,4} 7.5,{ }^{3} J_{5,6} 7.3,{ }^{4} J_{5,3} 1.3 \mathrm{~Hz}$, $\mathrm{H}(5) ; 7.08$, ddd, ${ }^{3} J_{4,3} 7.7,{ }^{3} J_{4,5} 7.5,{ }^{4} J_{4,6} 1.7 \mathrm{~Hz}, \mathrm{H}(4) ; 7.13, \mathrm{dd},{ }^{3} J_{3,4} 7.7,{ }^{4} J_{3,5} 1.3 \mathrm{~Hz}$, $\mathrm{H}(3) 7.60$, dd, ${ }^{3} J_{6,5} 7.3,{ }^{4} J_{6,4} 1.7 \mathrm{~Hz}, \mathrm{H}(6) .{ }^{13} \mathrm{C}$ NMR $\delta 12.0, \mathrm{C}\left(3^{\prime}\right)-\mathrm{CH}_{3} ; 14.1$, $\mathrm{C}\left(5^{\prime}\right)-\mathrm{CH}_{3} ; 27.6$ (2C), асас-CH ${ }_{3}$; 99.9, acac-CH; 109.1, $\mathrm{C}\left(4^{\prime}\right) ; 111.5, \mathrm{C}(3), 123.8$, $C(5) 124.8, C(4) ; 131.5, C(6) 152.5,144.8$ and $139.2, C(2), C\left(3^{\prime}\right)$ and $C\left(5^{\prime}\right) ; 186.3$ and 187.9, acac-CO. Found: C, $51.1 ; \mathrm{H}, 5.0 ; \mathrm{N}, 7.6 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ Pd calc: C, 51.0; H, 4.8; N, 7.4\%.

Acetylacetonato[2-(3-methyl-5-phenylpyrazol-1-yl)phenyl-C ${ }^{1}, N^{2^{\prime}}$]palladium(II) (3e). m.p. $148-150{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\delta 2.03$ and 2.10 , s, acac- $\mathrm{CH}_{3} ; 5.42$, s, acac-CH; 6.10, s, $\mathrm{H}\left(4^{\prime}\right) ; 6.34, \mathrm{dd},{ }^{3} J_{3,4} 8.0,{ }^{4} J_{3,5} 1.5 \mathrm{~Hz}, \mathrm{H}(3) ; 6.74$; ddd, ${ }^{3} J_{4,3} 8.0,{ }^{3} J_{4,5} 7.4,{ }^{4} J_{4,6} 1.5 \mathrm{~Hz}$, $\mathrm{H}(4) 6.93$, ddd, ${ }^{3} J_{5,4} 7.4,{ }^{3} J_{5,6} 7.3,{ }^{4} J_{5,3} 1.5 \mathrm{~Hz}, \mathrm{H}(5) ; 7.44-7.52, \mathrm{~m}, \mathrm{C}\left(5^{\prime}\right)-\mathrm{C}_{6} \mathrm{H}_{5} ; 7.55$, $\mathrm{dd},{ }^{3} \mathrm{~J}_{6,5} 7.3,{ }^{4} J_{6,4} 1.5 \mathrm{~Hz}, \mathrm{H}(6) .{ }^{13} \mathrm{C}$ NMR $\delta 12.1, \mathrm{C}\left(3^{\prime}\right)-\mathrm{CH}_{3} ; 27.5$, and 27.6_{3}, acac- $\mathrm{CH}_{3} ; 100.0$, acac- CH ; 109.9, C(4'); 112.7, C(3); 124.0, C(5); 124.3, C(4); 128.9, 5^{\prime}-ortho; 129.4, 5'-meta; 129.7, 5'-para; 129.9, 5'-ipso; 131.2, C(6); 134.9 and 143.0, $\mathrm{C}(1)$ and $\mathrm{C}(2) ; 152.6, \mathrm{C}(3) ; 186.3$ and 187.9, acac-CO. Found: C, 57.8; H, 4.8; N, 6.6. $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}$ calc: $\mathrm{C}, 57.5 ; \mathrm{H}, 4.6 ; \mathrm{N}, 6.4 \%$.

Acetylacetonato[2-(3,5-diphenylpyrazol-1-yl)phenyl- $C^{1}, N^{2^{\prime}}$ Jpalladium(II) (4e). m.p. 193-194.5 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\delta 1.42$ and $2.03, \mathrm{~s}$, acac- $\mathrm{CH}_{3} ; 5.23$, s, acac-CH; 6.39, dd, ${ }^{3} J_{3,4} 8.0,{ }^{4} J_{3,5} 1.0 \mathrm{~Hz}, \mathrm{H}(3) ; 6.40$, s, $\mathrm{H}\left(4^{\prime}\right) ; 6.76$, ddd, ${ }^{3} J_{4,3} 8.0,{ }^{3} J_{4,5} 7.4,{ }^{4} J_{4,6} 1.5$ $\mathrm{Hz}, \mathrm{H}(4) ; 6.96$, ddd, ${ }^{3} J_{5,4} 7.4,{ }^{3} J_{5,6} 7.7,{ }^{4} J_{5,3} 1.0 \mathrm{~Hz}, \mathrm{H}(5) ; 7.36-7.40, \mathrm{~m}, 3^{\prime}-\mathrm{meta}$ and 3^{\prime}-para; 7.49-7.53, m, $5^{\prime}-\mathrm{C}_{6} \mathrm{H}_{5} ; 7.57$, dd, ${ }^{3} J_{6,5} 7.7,{ }^{4} J_{6,4} 1.5 \mathrm{~Hz}, \mathrm{H}(6) ; 7.73$, m, 3^{\prime}-ortho. ${ }^{13} \mathrm{C}$ NMR $\delta 26.9$ and 27.3, acac- $\mathrm{CH}_{3} ; 99.8$, acac- CH ; 109.6, $\mathrm{C}\left(4^{\prime}\right) ; 113.4$, C(3); 124.3, C(4); 124.5, C(5); 127.6, 3^{\prime}-meta; 128.9, 3^{\prime}-para; 129.0, 5^{\prime}-meta; 129.4, 5^{\prime}-ortho; 129.7, 3^{\prime}-ortho; 129.9, 5^{\prime}-para; 129.6 and 130.2, 3^{\prime}-ipso and 5^{\prime}-ipso; 131.4, $C(6) ; 135.8,143.3$ and $144.3, C(1), C(2)$ and $C\left(5^{\prime}\right) ; 154.8, C\left(3^{\prime}\right) 185.4$ and 187.7,
acac-CO. Found: $\mathrm{C}, 61.1 ; \mathrm{H}, 4.4 ; \mathrm{N}, 5.5 \mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ Pd calc: C, 62.3; H, 4.4; N, 5.6\%.

Acetylacetonato[2-(indazol-2-yl)phenyl- $C^{1}, N^{I^{\prime}}$]palladium(II) (5e). m.p. > $280^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$: not soluble in CDCl_{3}. Found: $\mathrm{C}, 54.0 ; \mathrm{H}, 4.0 ; \mathrm{N}, 7.0$. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ Pd calc: C, $54.2 ; \mathrm{H}, 4.0 ; \mathrm{N}, 7.0 \%$.

Acetylacetonato[$2-(p y r a z o l-1-y l m e t h y l) p h e n y l-C^{l}, N^{2^{\prime}}$]palladium(II) (6e). m.p. $171-172{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\delta 2.03$ and 2.08 , acac- $\mathrm{CH}_{3} ; 5.31, \mathrm{CH}_{2} ; 5.42$, acac- $\mathrm{CH} ; 6.33$, dd, H(4); 6.96, dd, ${ }^{3} J_{3,4} 7.8,{ }^{4} J_{3,5} 1.3 \mathrm{~Hz}, \mathrm{H}(3) ; 7.00$, ddd, ${ }^{3} J_{4,3} 7.8,{ }^{3} J_{4,5} 7.4,{ }^{4} J_{4,6} 1.2$ $\mathrm{Hz}, \mathrm{H}(4) ; 7.10$, ddd, ${ }^{3} J_{5,4} 7.4,{ }^{3} J_{5,6} 7.8,{ }^{4} J_{5,3} 1.3 \mathrm{~Hz}, \mathrm{H}(5) ; 7.52$, dd, ${ }^{3} J_{6,5} 7.8,{ }^{4} J_{6,4} 1.2$ $\mathrm{Hz}, \mathrm{H}(6) ; 7.59$, dd, $\mathrm{H}(5) ; 7.84$, dd, $\mathrm{H}\left(3^{\prime}\right){ }^{13} \mathrm{C}$ NMR $\delta 27.7$ and 28.0 , acac- CH_{3}; 58.7, $\mathrm{CH}_{2}, 100.3$, асас-CH; 106.6, C(4'); 124.2, C(4); 125.1, C(3); 126.8, C(5); 131.0, $\mathrm{C}\left(5^{\prime}\right), 134.2, \mathrm{C}(6) ; 140.9, \mathrm{C}\left(3^{\prime}\right) ; 134.7$ and 140.1, $\mathrm{C}(1)$ and $\mathrm{C}(2) ; 186.6$ and 188.1, acac-CO. Found: C, 49.0; H, 4.4; N, 7.7. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}$ calc: C, 49.7; H, 4.5; N, 7.7\%.

Crystallography

Table 3 lists crystal data and X-ray experimental details for 3e. Intensity data were collected with a Nicolet R3m four-circle diffractometer by using monochromatized $\mathrm{Mo}-K_{\alpha}$ radiation. Cell parameters were determined by least-squares refinement, the setting angles of 25 accurately centered reflections ($2 \theta>20^{\circ}$) being used. Throughout data collection the intensities of three standard reflections were moni-

TABLE 3
CRYSTAL DATA AND X-RAY EXPERIMENTAL DETAILS FOR 3e

Formula	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}$
Molecular weight	438.8
Crystal system	monoclinic
Space group	$P 2{ }_{1} / c$
$a(\AA)$	$15.035(3)$
$b(\AA)$	$8.541(1)$
$c(\AA)$	$16.340(4)$
$\beta\left({ }^{\circ}\right)$	$117.10(1)$
$V\left(\AA^{3}\right)$	$1867.9(6)$
$D_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.560
Z	4
$F(000)$	888
μ (cm $\left.{ }^{-1}\right)$	9.95
Radiation	$\mathrm{Mo}-K_{\mathrm{a}}$
Wavelength	0.71069
Temperature $\left.{ }^{\circ}{ }^{\circ} \mathrm{C}\right)$	-130
Crystal dimensions (mm)	$0.63 \times 0.40 \times 0.26$
Scan mode	$\theta / 2 \theta$
2θ range $\left({ }^{\circ}\right)$	$3-50$
Unique reflections	3269
Observed reflections $(I>3 \sigma(I))$	2910
Number of parameters	235
g	0.00027
R	0.030
$w R$	0.042

TABLE 4
ATOM COORDINATES $\left(\times 10^{4}\right)$ AND TEMPERATURE FACTORS $\left(\AA^{2} \times 10^{3}\right)$ FOR 3e

Atom	x	y	z	$U_{\text {eq }}{ }^{a}$
Pd	1866(1)	5395(1)	5320(1)	26(1)
N(1)	3015(2)	6742(3)	4492(2)	27(1)
N(2)	2610(2)	7145(3)	5068(2)	28(1)
C(3)	2923(3)	8593(4)	5360(2)	33(1)
C(4)	3541(3)	9107(4)	4985(2)	37(1)
C(5)	3582(2)	7920(3)	4437(2)	29(1)
C(11)	2774(2)	5199(3)	4114(2)	26(1)
C(12)	2236(2)	4309(3)	4462(2)	26(1)
C(13)	1984(2)	2796(4)	4136(2)	30(1)
C(14)	2229(2)	2197(4)	3481(2)	35(1)
C(15)	2732(2)	3120(4)	3126(2)	33(1)
C(16)	3002(2)	4645(3)	3435(2)	30(1)
C(31)	2632(3)	9459(4)	5990(3)	43(2)
C(51)	4139(2)	7866(3)	3886(2)	28(1)
C(52)	3746(2)	8587(4)	3039(2)	33(1)
C(53)	4244(3)	8524(4)	2504(2)	39(1)
C(54)	5137(2)	7765(4)	2817(2)	41(1)
C(55)	5551(2)	7063(4)	3676(2)	40(1)
C(56)	5051(2)	7111(4)	4205(2)	35(1)
C(71)	711(3)	7198(4)	7139(4)	45(2)
C(72)	912(2)	6103(4)	6533(2)	32(1)
C(73)	543(2)	4568(4)	6412(2)	32(1)
C(74)	712(2)	3373(4)	5933(2)	31(1)
C(75)	275(3)	1774(4)	5919(2)	41(1)
O(2)	1449(2)	6652(2)	6183(2)	34(1)
O(4)	1229(2)	3436(2)	5492(1)	32(1)

${ }^{a}$ Equivalent isotropic U defined as one-third of the trace of the orthogonalised $U_{i j}$ tensor.
tored at regular intervals and this indicated no significant crystal decomposition. The intensities were corrected for Lorentz and polarization effects and an empirical absorption correction, based on azimuthal φ scans, was applied. The space group followed from systematic absences.

The structure was solved by conventional Patterson and Fourier methods, and refined by blocked cascade least-squares procedures. All non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were included in calculated positions with isotropic thermal parameters equal to the isotropic of their carrier atoms. The function minimized was $\Sigma w\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2}$, with $w=\left[\sigma^{2}\left(F_{0}\right)+\right.$ $\left.g F_{0}^{2}\right]^{-1}$. All calculations (including diagrams) were performed on a Nova 4X computer using SHELXTL [30].

Final atom coordinates are listed in Table 4. Tabulations of structure factors, hydrogen atom coordinates, anisotropic thermal parameters and equations of meanplanes are available from the author P.J.S.

Acknowledgement

We acknowledge grants from the Research Committee of the New Zealand Universities Grants Committee.

References

1 I. Omae, J. Organomet. Chem. Library, 18 (1986) 35, and references therein.
2 A.D. Ryabov, Synthesis, (1985) 233.
3 P.J. Steel and G.B. Caygill, J. Organomet. Chem., 327 (1987) 101.
4 S. Trofimenko, Inorg. Chem., 12 (1973) 1215.
5 M. Nonoyama and H. Takayanagi, Trans. Met. Chem., 1 (1975) 10.
6 M.I. Bruce, B.L. Goodall and I. Matsuda, Aust. J. Chem., 28 (1975) 1259.
7 K. Hiraki, Y. Fuchita and K. Takechi, Inorg. Chem., 20 (1981) 4316.
8 Y. Fuchita, K. Hiraki and Y. Kage, Bull. Chem. Soc. Japan, 55 (1982) 955.
9 A.R. Chakravarty, F.A. Cotton and D.A. Tocher, Organometallics, 4 (1985) 863.
10 D.R. Russell and P.A. Tucker, J. Chem. Soc., Dalton Trans., (1975) 1743.
11 D.G. Allen, G.M. McLaughlin, G.B. Robertson, W.L. Steffen, G. Salem and S.B. Wild, Inorg. Chem., 21 (1982) 1007.
12 G.D. Fallon and B.M. Gatehouse, J. Chem. Soc., Dalton Trans., (1974) 1632.
13 C. Arlen, M. Pfeffer, O. Bars and D. Grandjean, J. Chem. Soc., Dalton Trans., (1983) 1535.
14 M.R. Churchill, H.J. Wasserman and G.J. Young, Inorg. Chem., 19 (1980) 762.
15 J. Selbin, K. Abboud, S.F. Watkins, M.A. Gutierrez and F.R. Fronczek, J. Organomet. Chem., 241 (1983) 259.

16 N. Barr, S.F. Dyke, G. Smith, C.H.L. Kennard and V. McKee, J. Organomet. Chem., 288 (1985) 109.
17 A.A. Watson, D.A. House and P.J. Steel, J. Organomet. Chem., 311 (1986) 387.
18 G. Minghetti, M.A. Cinellu, G. Chelucci, S. Gladiali, F. Demartin and M. Manassero, J. Organomet. Chem., 307 (1986) 107.
19 S. Kawaguchi, Coord. Chem. Rev., 70 (1986) 51.
20 Y. Zenitani, K. Inoue, Y. Kai, N. Yasuoka and N. Kasai, Bull. Chem. Soc. Japan, 49 (1976) 1531.
21 S. Kotake, T. Sei, K. Miki, Y. Kai, N. Yasuoka and N. Kasai, Bull. Chem. Soc. Japan, 53 (1980) 10.
22 K. Miki, N. Tanaka and N. Kasai, Acta Crystallogr., B37 (1981) 447.
23 T. Kurokawa, K. Miki, N. Tanaka and N. Kasai, Bull. Chem. Soc. Japan, 55 (1982) 45.
24 A.G. Constable, W.S. McDonald, L.C. Sawkins and B.L. Shaw, J. Chem. Soc., Dalton Trans., (1980) 1992.

25 J. Elguero, in A.R. Katritsky and C.W. Rees (Eds.), Comprehensive Heterocyclic Chemistry, Vol. 5 (K.T. Potts (Ed.)), Pergamon Press, Oxford, 1984, p. 167 and references therein.

26 J. Elguero, R. Jacquier and H.C.N. Tien Duc, Bull. Soc. Chim. Fr., (1966) 3727.
27 F. Texier-Boullet, B. Klein and J. Hamelin, Synthesis, (1986) 409.
28 J.I.G. Cadogan and R.K. Mackie, Org. Synth., 48 (1968) 113.
29 R.G. Jones, J. Am. Chem. Soc., 71 (1949) 3994.
30 G.M. Sheldrick, SHELXTL User Manual, Revision 4. Nicolet XRD Corporation, Madison, WI, 1984.

[^0]: * For part II see ref. 3.

